
Week 11

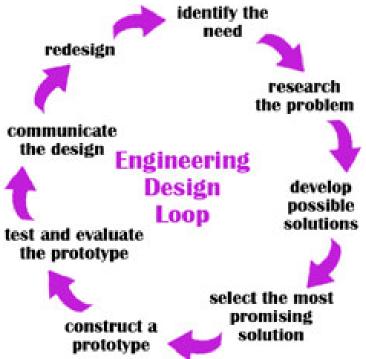
Introduction to the Design Process

The formal, iterative process used to design and build solutions, often explained in 5-8 steps.

Also called EDP.

Formal —

The steps of the design process are followed in a particular order (clockwise)



Iterative —

- Repetitive
- The Steps of the EDP may be conducted many times, resulting in the generation of many designs and prototypes.

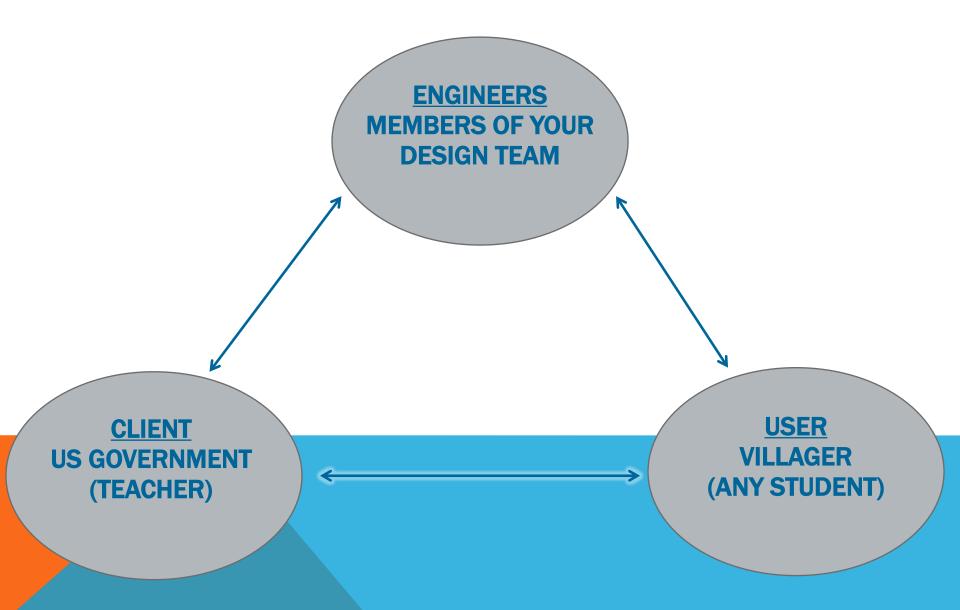
- 1. Define the problem/Identify the need
- 2. Research the problem
- 3. Brainstorm/develop solutions
- 4. Select the solution
- 5. Build/construct prototype
- 6. Test and evaluate prototype
- 7. Communicate the design
- 8. Redesign (as needed)

Criteria —

A limitation or restriction

Constraint —

- Standards against which something must be judged
- Minimum expectations assigned for a design


User —

- A person using the solution
- Client —
- A person who hires the engineer

Engineer —

A person who designs solutions

STAKEHOLDERS

- 1. <u>Define the Problem/Identify the</u> <u>Need</u>
 - Make clear the need for a solution.
 - Identify the criteria and any constraints.

HW PROBLEM THIS WEEK: CLIENT STATEMENT

The US government hires you to design and build a device to protect eggs falling from the sky. The government wants to drop eggs from an airplane in a secluded village to help with the shortage of food. The government want to keep the cost to a minimum.

 Low cost device that can protect an egg under free fall.

CLIENT'S CRITERIA

- Can only use: cardboard, glue, ballons.
- Most protect at least 2 eggs.
- Each dimension has to be smaller than 20 cm.
- Can be manipulated with hands.
- Costs equal to, or less than, \$1.
- Is completed in less than 2 hours.

- 2. Research the Problem and define problem constraints
 - Collect information about concepts relevant to the problem statement.
 - Take notes (in own words) from valid sources.

REVERSE ENGINEERING

The process of conducting research on how a solution (object or process) works, in order to understand what works well and what does not work well.

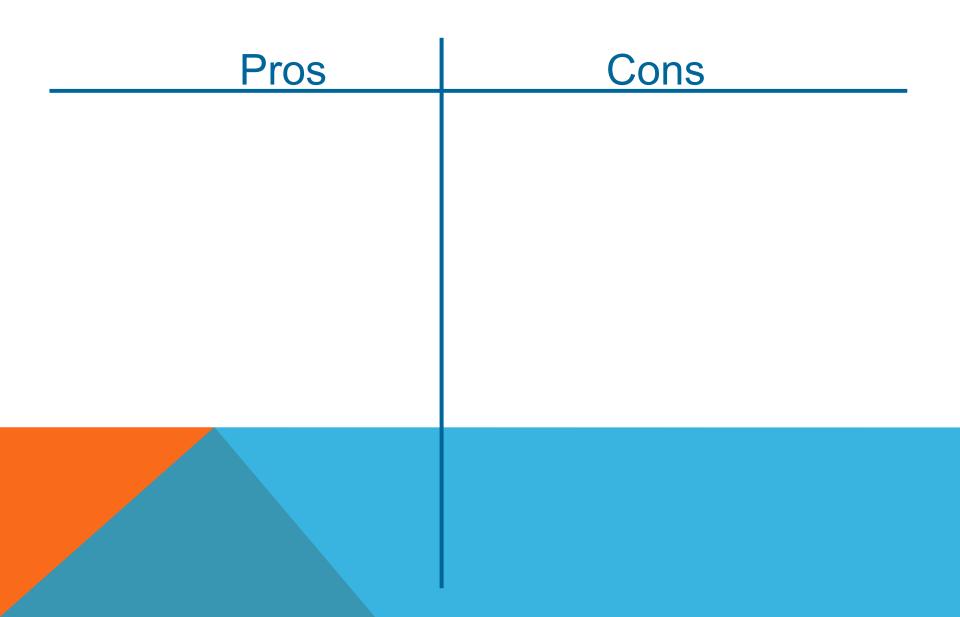
Research relevant topics:

- the structure of the human hand
- the function of the human hand

And then:


Conduct *reverse engineering:*

- assistive hand devices that have already been invented
- assistive technologies for gripping cups
- the pros and cons of both (above) technologies


REMEMBER...

In your research, consider the *materials* you will use and their costs per unit

ON NOTEBOOK PAPER

BUDGET

- A determined quantity that must be considered in design and testing plans
- A constraint

3. Brainstorm Solutions

Generate ideas that will solve the problem (as defined in step 1, *Define the Problem/ Identify the Need*).

BRAINSTORMING RULES

- 1. Generate as many ideas as possible.
- 2. Withhold judgment and be respectful.
- 3. Encourage wild ideas.
- 4. Build on others' ideas as much as possible.

4. Select the Best Solution

Pick one design that will best **solve the problem.**

All members of the design team **must agree** to start with this choice.

5. Build Prototype

Followed by

6. Test and Evaluate Prototype

Observe and collect data on how your design performs, whether criteria are satisfied.

7. Communicate the Design

Communicate to other(s) about how your prototype performed in the test, and why.

8. <u>Redesign</u>

Go back to any step in the EDP and revise your prototype, according to feedback from step 7, *Communicate the Design. Make a final presentation.*